LTE and 5G network topologies and infrastructure technologies must converge flawlessly at a cell site to ensure peak performance. In order to integrate all the elements into a functioning cell site, installation and maintenance teams have been using multiple test sets, manual test processes, and manual report consolidation. With the volume of new cell sites that must be installed, multiple test sets and manual processes simply don’t meet the work speed and accuracy now required.

Introducing the VIAVI OneAdvisor-800, a portable test solution that brings unprecedented simplicity, speed, and accuracy to site turn-up. Intuitive test process automation streamlines the work into a short sequence of push-button tests.

OneAdvisor combines fiber inspection and validation, cable and antenna analysis, as well as over the air tests with spectrum and interference analysis. All tests are conducted with an intuitive workflow automation bringing built-in guidance, automatic configuration, pass/fail results, and a single report package ready for closeout. OneAdvisor allows field teams to get in, get out, and get paid.

OneAdvisor-800 Benefits

- **Improved tool efficiency.** Replaces multiple independent tools (i.e. OTDR, CAA, Fiber scope, etc).
- **Broad coverage.** Covers all radios types (LTE and 5G) and topologies (Macro-cell, Small-cell, C-RAN, and/or DAS)
- **Scalable.** As a team’s test responsibility grows, so can the OneAdvisor platform with modular test components

Benefits of OneAdvisor-800

Test Process Automation

- **Greater accuracy.** Complete test plans exactly to the specifications of the service provider with precise measurements
- **Consistency.** Test processes and workflows are defined centrally and “pushed” to test instruments, eliminating the variability of manual procedures and drives consistent, repeatable results, regardless of technician skill or experience level
- **Lower Training Costs.** Training focus shifts to the test process itself, which is faster and easier to learn, rather than on technical information that is generally time-consuming and overwhelming for new technicians
- **Speed.** Job Manager eliminates wasted technician time trying to remember which tests to run and how to run them
- **Peace of Mind.** Test results automatically uploaded to the StrataSync cloud
Test Process Automation with Job Manager and StrataSync

The VIAVI test process automation software, Job Manager, offers network operations and construction teams a self-guided solution to improve efficiency in the field for cell-site installation and maintenance. By automating the entire process, Job Manager ensures the proper test sequence is executed, time is not wasted, and results are consistent.

StrataSync

StrataSync is cloud-hosted system that provides a centralized management of test solutions including: test set management, test configurations, data management, and test results. Stratasync is designed to eliminate email dispatches, manual test procedures, manual report consolidation, test solution availability and test devices that need calibration.

With Test Process Automation, contractors and cell-technicians can perform installation and maintenances tests with confidence:

- In accordance with mobile operator’s test criteria
- Covering all radios types (LTE and 5G) and topologies (Macro-cell, Small-cell, C-RAN, and/or DAS)
- Automatically uploading test results to the StrataSync cloud with simple PASS/FAIL indicator

Job Manager benefits and key features

- **Reduce Typing**
 - Easily create jobs consisting of multiple tests via a web interface
 - Eliminates the need to fill in information at the job site

- **Guide Technicians**
 - Step by step checklist of ensures that all tests are executed

- **Summarize Status**
 - Single summary report provides an easy to read indication that all tests pass
 - All the details are still available

- **Ensure the job is Done Right**
 - Make every tech and expert just by following the plan

Fiber Inspection

The most common cause of signal impairment in an optical system is a dirty connector or end-face, which can get contaminated very easily at a windy, outdoor cell site. Therefore, the first step in achieving acceptable insertion- and return-loss measurements is by inspecting end-faces with a fiber microscope.

There are multiple VIAVI microscopes that integrate with the OneAdvisor-800, including the P5000i. The P5000i connects to the ONA-800 with a simple USB connection, and makes certifying that every connection in your mobile network is clear fast and easy.

FBP-P5000i Specifications

<table>
<thead>
<tr>
<th>General Technical (typical at 25°C)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>110 g (3.88 oz)</td>
</tr>
<tr>
<td>Dimensions (w x h x d)</td>
<td>140 x 46 x 44 mm (5.5 x 1.8 x 1.7 in)</td>
</tr>
</tbody>
</table>
| **Low mag field-of-view (FOV)** | Horizontal: 740 μm
 Vertical: 550 μm |
| **High mag field-of-view (FOC)** | Horizontal: 370 μm
 Vertical: 275 μm |
| **Live image** | 640 x 480 fps |
| **Connector** | USB 2.0 (backwards compatible to USB 1.1) |
| **Cord length** | 183 cm (6 ft) |
| **Camera sensor** | 2560 x 1920, 1/2.5-in CMOS |
| **Particle size detection** | <1 μm |
| **Light source** | Blue LED, 100,000+ hour life |
| **Lighting technique** | Coaxial |
| **Power source** | USB Port |
| **Certification** | CE |
| **Warranty** | 1 yr |

FBPP-WIFI Specifications

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>218 x 50 x 131 mm (8.6 x 2.0 x 5.2 in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>272 g (9.5 oz)</td>
</tr>
<tr>
<td>Connector</td>
<td>USB 2.0 (Micro-B)</td>
</tr>
<tr>
<td>Power Source</td>
<td>Internal Li-ion Battery, USB power</td>
</tr>
<tr>
<td>Run Time</td>
<td>5.5 hr</td>
</tr>
</tbody>
</table>
| **Charge Time** | 2.5 hr (2.1 A max power source)
 8 hr (500 mA max power source) |
| **Power Supply** | 5 VDC, 2.1 A USB power adapter with interchangeable wall plug for EU, UK, US, and AU |
Fiber optic testing – OTDR

Fiber is the foundation of the 5G infrastructure and must be tested to ensure its readiness to transmit huge data loads. Historically, testing fiber with an optical time-domain reflectometer (OTDR) was expensive and complicated. With the VIAVI OTDR module that pairs with the OneAdvisor-800, fiber testing the network at cell-sites is now simple, fast, and cost-effective.

Standard tests:
- Automatic macro bend detection
- Summary results table with pass/fail analysis
- Bidirectional OTDR analysis
- Smart Link Mapper (SLM) icon-based map view of the fiber link
- SmartAcq perform a short and long pulse acquisition to improve measurement reliability

Key Features:
- Up to 45 dB dynamic range and 256,000 acquisition points
- Quad module, combined single-mode/multimode 850, 1300, 1310, 1550 nm
- Dual/tri-wavelength modules with 1310/1550/1625 nm
- Tunable DWDM OTDR module at ITU-T G.694.1 wavelengths
- Integrated CW light source and power meter
- TIA/IEC pass/fail thresholds
- Propagation delay measurement in multimode (TIA-568-C)
- Instantly detects traffic when connected to live fiber (except on live/filtered port)
- ITU Fiber type identification (G65x A, B, C and D)
- IEC 61280–4–1-compliant using an external modal controller
- Ready for SLM, FTTA-SLM, and FTTHSLM intelligent optical application software

Specifications

<table>
<thead>
<tr>
<th>General (typical at 25°C)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>0.35 kg (0.77 lb)</td>
</tr>
<tr>
<td>Dimensions (w x h x d)</td>
<td>128 x 134 x 40 mm (5 x 5.28 x 1.58 in)</td>
</tr>
</tbody>
</table>

| Optical Interfaces | |
| Interchangeable optical connectors¹ | FC, SC, LC (PC or APC) and ST (PC) |

Technical Characteristics	
Laser safety class (21CFR)	Class 1
Distance units	Kilometers, feet, and miles
Group index range	1.30000 to 1.70000 in 0.00001 steps
Number of data points	- Up to 128,000 for MM, QUAD, LA
	- Up to 256,000 for MA2, MA3, MP2

Distance measurement

Mode	Automatic or dual cursor
Display range	0.1 up to 400 km
Cursor resolution	1 cm
Sampling resolution	4 cm
Accuracy	±0.5 m ±sampling resolution ±10⁻⁵ x distance (excluding group index uncertainties) for MA2, MA3, MP2 ±1 m ±sampling resolution ±10⁻⁵ x distance for LA, MM and QUAD

¹ Interchangeable optical connectors: FC, SC, LC (PC or APC), and ST (PC)
Specifications continued

Attenuation Measurement

<table>
<thead>
<tr>
<th>Mode</th>
<th>Automatic, manual, 2-point, 5-point, and LSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display range</td>
<td>1.25 to 55 dB</td>
</tr>
<tr>
<td>Display resolution</td>
<td>0.001 dB</td>
</tr>
<tr>
<td>Cursor resolution</td>
<td>0.001 dB</td>
</tr>
<tr>
<td>Linearity</td>
<td>$\pm 0.03 \text{ dB/dB} / \pm 0.05$ for LA</td>
</tr>
<tr>
<td>Threshold</td>
<td>0.01 to 5.99 dB in 0.01 dB steps</td>
</tr>
</tbody>
</table>

Reflectance/ORL Measurements

Reflectance accuracy	± 2 dB
Display resolution	0.01 dB
Threshold	-11 to -99 dB in 1 dB steps

Source² Power Meter (optional)

CW source output power level	-3.5 dBm
Power level range (MM/SM)³	-3 to -30 / 0 to -55 dBm
Calibrated wavelengths (SM)	1310/1490/1550/1625/1650 nm
Calibrated wavelengths (MM)⁴	850/1300 nm
Measurement accuracy (SM)	± 0.5 dB
Measurement accuracy (MM)⁵	± 1 dB

OTDR Modules (typical at 25°C)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Central Wavelength⁶</th>
<th>RMS Dynamic Range⁷</th>
<th>Event Dead Zone⁸</th>
<th>Attenuation Dead Zone⁹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quad</td>
<td>850/1300 ±30 nm 1310/1550 ±20 nm</td>
<td>26/24 dB 37/35 dB</td>
<td>0.8 m 0.9 m</td>
<td>4 m</td>
</tr>
<tr>
<td>MA2</td>
<td>1310 ±20 nm 1550 ±20 nm 1625 ±10 nm</td>
<td>40 dB 40 dB 38 dB</td>
<td>0.7 m 0.7 m 0.7 m</td>
<td>3 m 3 m 3 m</td>
</tr>
<tr>
<td>MA3</td>
<td>1310 ±20 nm 1550 ±20 nm 1625 ±10 nm</td>
<td>43 dB 41 dB 41 dB</td>
<td>0.7 m 0.7 m 0.7 m</td>
<td>3 m 3 m 3 m</td>
</tr>
<tr>
<td>DWDM</td>
<td>C-band tuning – C62 to C12 (1527.99 nm – 1567.95 nm) @ 100GHz</td>
<td>44 dB</td>
<td>1.5 m</td>
<td>4 m</td>
</tr>
</tbody>
</table>

1. ST for QUAD/MM only
2. Same wavelengths as the OTDR port. Not available on live port.
3. -2 to -50 dBm for Quad
4. Available on MM and Quad modules
5. Using a modal controller
6. Laser at 25°C and measured at 10 µs
7. The one-way difference between the extrapolated backscattering level at the start of the fiber and the RMS noise level, after 3 minutes averaging
8. Measured at ± 1.5 dB down from the peak of an unsaturated reflective event
9. Measured at ± 0.5 dB from the linear regression using a FC/UPC-type reflectance
10. Measured on optical fiber with Rayleigh parameter $K(-82.01 \text{dB} \pm 0.17 \text{dB at 1546 nm})$
Sweep Test – Cable and Antenna Analyzer (CAA)

Most problems in mobile networks occur in cell site infrastructure: antennas, cables, amplifiers, filters, connectors, combiners, jumpers, etc. The Cable and Antenna Analyzer module, in combination with the OneAdvisor-800, guides a technician through a sweep test that confirms system integration and antenna performance. The user-friendly GUI with intuitive pass/fail results instantly identifies problems enabling a technician to easily determine if the performed installation meets the required performance specifications.

Key Applications
- Acceptance testing for new cell sites
- DAS deployment validation
- Test and commission distributed radios with coaxial feed lines

Technical Data

<table>
<thead>
<tr>
<th>Frequency</th>
<th>12.5 MHz to 6 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency resolution</td>
<td>1 kHz</td>
</tr>
<tr>
<td>Frequency accuracy</td>
<td>±2.5 ppm @25°C</td>
</tr>
<tr>
<td>Aging per year</td>
<td>±1 ppm</td>
</tr>
</tbody>
</table>

Data points
126, 251, 501, 1001, 2001

Measurement bandwidth
10 kHz

Measurement accuracy after OSL calibration
Corrected directivity > 42 dB
Reflection uncertainty ±(0.3 + [20log (1 + 10\(^{-EP/20}\))]) typical
EP = directivity – measured return loss

Measurement Accuracy after EZ-Cal calibration
Corrected directivity
> 38 dB (≤ 4 GHz)
> 33 dB (> 4 GHz)

Important Features
- Easy to interpret OTDR results with SmartLink Mapper apps
- Performance characterization and validation of RF devices
- NFC antenna test (RFID and security equipment)
- Trace overlay accurately detects signal degradation over time
- Dual display and multiple tabs allow fast and efficient measurements
- Intuitive pass/fail analysis instantly notifies of any cable and antenna system problem
- Integrated RF CW source enables small cell coverage and DAS path loss testing
- EZ-Cal™ technology ensures fast and easy calibration

Reflection uncertainty
±(0.3 + [20log (1 + 10\(^{-EP/20}\))]) typical (≤ 4 GHz)
±(1 + [20log (1 + 10\(^{-EP/20}\))]) typical (> 4 GHz)
EP = directivity – measured return loss

Output power
<table>
<thead>
<tr>
<th>Level</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>0 dBm nominal</td>
</tr>
<tr>
<td>Low</td>
<td>-30 dBm nominal</td>
</tr>
</tbody>
</table>

Maximum input level
<table>
<thead>
<tr>
<th>Type</th>
<th>23 dBm nominal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average continuous power</td>
<td></td>
</tr>
<tr>
<td>DC voltage</td>
<td>±50 V DC</td>
</tr>
</tbody>
</table>

Interference immunity
<table>
<thead>
<tr>
<th>Type</th>
<th>15 dBm @ ≥ 1.3 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>On channel</td>
<td></td>
</tr>
<tr>
<td>On frequency</td>
<td>15 dBm within 100 kHz</td>
</tr>
</tbody>
</table>

Reflection
<table>
<thead>
<tr>
<th>Type</th>
<th>0.5 ms per data point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement speed</td>
<td></td>
</tr>
<tr>
<td>VSWR range</td>
<td>1 to 65</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.01</td>
</tr>
<tr>
<td>Return loss range</td>
<td>0 to 60 dB</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.01 dB</td>
</tr>
<tr>
<td>Distance to Fault (DTF)</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Measurement speed</td>
<td>0.5 ms per data point</td>
</tr>
<tr>
<td>Vertical VSWR range</td>
<td>1 to 65</td>
</tr>
<tr>
<td>Vertical resolution</td>
<td>0.01</td>
</tr>
<tr>
<td>Vertical return loss range</td>
<td>0 to 60 dB</td>
</tr>
<tr>
<td>Vertical resolution</td>
<td>0.01 dB</td>
</tr>
<tr>
<td>Horizontal range</td>
<td>0 to (# of data points – 1) x horizontal resolution Maximum = 1500 m (4921 ft)</td>
</tr>
<tr>
<td>Horizontal resolution</td>
<td>(1.5 x 10⁶) x (VP)/ΔF</td>
</tr>
<tr>
<td>VP = propagation velocity</td>
<td>ΔF = stop frequency – start frequency (Hz)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1-port cable loss</th>
<th></th>
<th>Bias voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range</td>
<td>0 to -30 dB</td>
<td>Voltage range</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.01 dB</td>
<td>Voltage resolution</td>
</tr>
<tr>
<td>1-port phase</td>
<td></td>
<td>Current</td>
</tr>
<tr>
<td>Measurement range</td>
<td>-180 to +180°</td>
<td>RF CW source</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.01°</td>
<td>Output power range</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Step</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accuracy</td>
</tr>
<tr>
<td>Smith chart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impedance</td>
<td>50 Ω</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>